HYDAD INTERNATIONAL

Hydraulic dampers

1. DESCRIPTION

1.1. FUNCTION

The pressure fluctuations occurring in hydraulic systems can be cyclical or oneoff problems due to:

- Flow rate fluctuations from displacement pumps
- Actuation of shut-off and control valves with short opening and closing times
- Switching on and off of pumps
- Sudden linking of spaces with different pressure levels

HYDAC hydraulic dampers are particularly suitable for damping such pressure fluctuations.


Selecting the most suitable hydraulic damper for each system ensures that:

- Vibrations caused by pipes, valves, couplings etc. are minimised and subsequent pipe and valve damage is prevented
- Measuring instruments are protected and their performance is no longer impaired
- The noise level in hydraulic systems is reduced
- The performance of machine tools is improved
- Interconnection of several pumps in one line is possible
- A pump rpm and feed pressure increase is possible
- The maintenance and servicing costs can be reduced
- The service life of the system is increased

2. APPLICATION

2.1. PULSATION DAMPING TYPE SB...P / SBO...P

with accumulator

	(standard connection bladder accumulator)
Pressure	

with accumulator

		1	1			

2.1.1 General

The HYDAC pulsation damper

- Prevents pipe breaks caused by material fatigue, pipe oscillations and irregular flow rates,
- Protects valves, control devices and other instruments,
- Improves noise level damping

2.1.2 Applications

The pulsation damper is particularly suitable for hydraulic systems, displacement pumps, sensitive measurement and control instruments and manifolds, e.g. in process circuits in the chemical industry.

2.1.3 Mode of operation

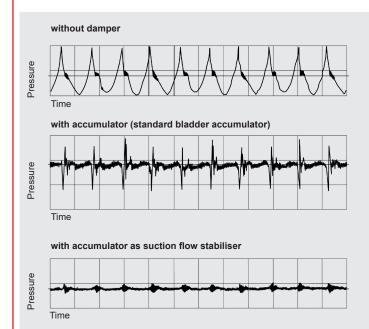
The pulsation damper generally has two fluid ports and can therefore be fitted directly inline.

The flow is diverted in the fluid valve so that it is directed straight at the bladder or diaphragm. This causes direct contact of the flow with the bladder or diaphragm which, in an almost inertia-less operation, balances the flow rate fluctuations via the gas volume.

It particularly compensates for higher frequency pressure oscillations. The charge pressure is adjusted to individual operating conditions.

2.1.4 Design

HYDAC pulsation dampers consist of:


- The welded or forged pressure vessel in carbon steel; available with internal coating or in stainless steel for chemically aggressive fluids
- The special fluid valve with inline connection, which guides the flow into the vessel (threaded or flange connection)
- The bladder or diaphragm in various elastomers as shown in section 4.1.

2.1.5 Installation

As close as possible to the pulsation source. Mounting position preferably vertical (gas valve pointing upwards). Preferred and alternative installation positions are shown in schematic form in section 1.3.

HYDAC 81

2.2. SUCTION FLOW STABILISATION

2.2.1 General

The HYDAC suction flow stabiliser

Improves the NPSH value of the system

Prevents cavitation of the pump

Prevents pipe oscillations

2.2.2 Applications

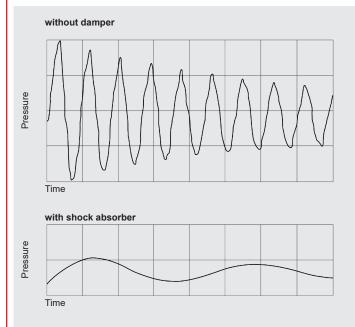
Main application areas are piston and diaphragm pumps in public utility plants, reactor construction and the chemical industry.

2.2.3 Mode of operation

Trouble-free pump operation is only possible if no cavitation occurs in the pump suction and pipe oscillations are prevented.

A relatively high fluid volume in the suction flow stabiliser in relation to the displacement volume of the pump reduces the acceleration effects of the fluid column in the suction line. An air separation is also achieved due to the extremely low flow rate in the suction flow stabiliser and the deflection on a baffle. By adjusting the charging pressure of the bladder to the operating conditions, the best possible damping is achieved.

2.2.4 Design


The HYDAC suction flow stabiliser consists of a welded vessel in steel or stainless steel.

The inlet and outlet are on opposite sides and are separated by a baffle, other versions on request. The upper part houses the encapsulated bladder. In addition, there is a vent screw in the end cap and a drainage facility on the bottom.

2.2.5 Installation

As close as possible to the suction inlet of the pump. Vertical mounting position (gas valve pointing upwards).

2.3. SHOCK ABSORPTION

2.3.1 General

The HYDAC shock absorber

- Reduces pressure shocks
- Protects pipelines and valves from being destroyed

2.3.2 Applications

The accumulators are particularly suitable for use in pipelines with quick-acting valves or flaps and whilst pumps are being switched on and off.

They are also suitable for energy storage in low pressure applications.

2.3.3 Mode of operation

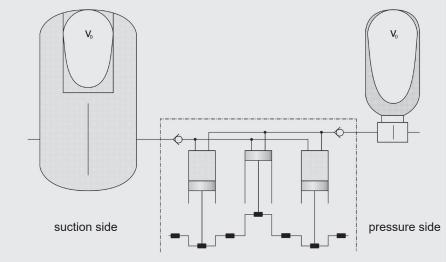
Sudden changes in pipeline flow, such as those caused by pump failure or the closing or opening of valves, can cause pressures which are many times higher than the normal values.

The shock absorber prevents this by converting potential energy into kinetic energy and vice versa. This prevents pressure shocks and protects pipelines, valves, monitoring instruments and other pipe fittings from destruction.

2.3.4 Design

The shock absorption can be provided by using bladder, piston and diaphragm accumulators. Further technical details on the individual accumulator types can be found in the following brochure sections:

- Bladder accumulators, low pressure No. 3.202
- Bladder accumulators, standard design No. 3.201
- Diaphragm accumulators No. 3.100
- Piston accumulators, standard design No. 3.301


2.3.5 Installation

As close as possible to the source of the erratic condition. Vertical mounting position (gas valve pointing upwards).

82 HYDAC

3 SIZING

3.1. PULSATION DAMPER AND SUCTION FLOW STABILISER

On the suction side and the pressure side of piston pumps there are almost identical conditions in terms of the irregularity of the flow rate. Therefore, the same formulae for determining the effective gas volume are used to calculate the damper size. The fact that two completely different damper types are ultimately used is due to the different acceleration and pressure ratios on the two sides.

When selecting the pulsation damper, it is not only the gas volume V_0 which is a decisive factor. The connection size of the pump also has to be taken into account. In order to avoid additional cross-section variations, which represent reflection points for vibrations, and to keep pressure drop to a reasonable level, the fitting cross-section of the damper must be the same as that of the pipeline.

The gas volume V_0 of the damper is determined with the aid of the formula for adiabatic changes of state.

By giving the residual pulsation or the gas volume, the damper size can be dimensioned with the aid of the HYDAC software **ASP** (Accumulator **S**imulation **P**rogram).

Designations:

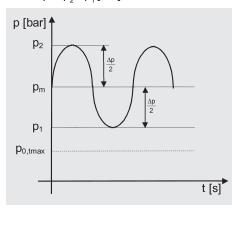
$$\Delta V = \text{fluctuating} \\ \text{fluid volume [I]} \\ \Delta V = m \cdot q \\ q = \text{stroke volume [I]} \\ q = \frac{\pi \cdot d_{\kappa}^{2}}{\kappa} \cdot h$$

$$q = \frac{\pi \cdot a_{\kappa}}{4} \cdot h_{r}$$

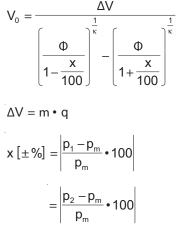
d_k = piston diameter [dm]

$$h_k = piston stroke [dm] m = amplitude factor$$

m =
$$\frac{\Delta V}{\pi}$$

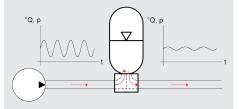

x = residual pulsation [± %]

κ = isentropic exponent

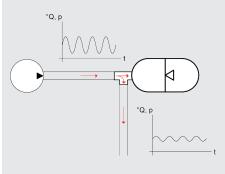

 Φ = pressure ratio of pre-charge pressure to operating pressure [0.6 to 0.9]

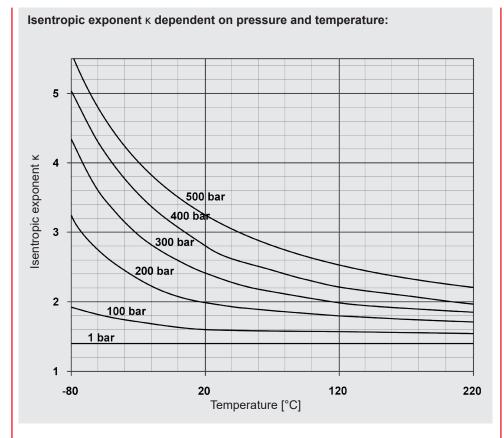
$$\Phi = \frac{p_0}{r}$$

 p_m $\Delta p = \text{amplitude of pressure fluctuations}$ $\Delta p = p_2 - p_1[\text{bar}]$



Formulae:




Diagram of mounting options:

Preferred installation configuration with maximum damping effect

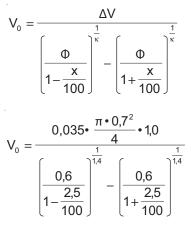
Alternative installation configuration using standard accumulator with a T-piece with reduced damping effect

Amplitude factor (m) for piston pump:

	m valu	le
z	single acting	double acting
1	0.548	0.206
$ \frac{1}{2} \\ \frac{3}{4} \\ \frac{5}{6} $	0.206	0.042
3	0.035	0.018
4	0.042	0.010
5	0.010	0.007
6	0.018	0.005
7	0.005	
8	0.010	
9	0.001	
~		

Others on request

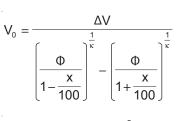
3.1.1 Calculation example Given parameters:

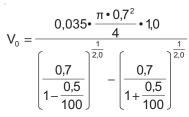

Single-acting 3-piston pu	mp
Piston diameter:	70 mm
Piston stroke:	100 mm
Drive speed:	370 rpm
Flow rate:	427 l/min
Operating temperature:	20 °C
Operating pressure	
– pressure side:	200 bar
– suction side:	4 bar

Required:

- a) Suction flow stabiliser for a residual pulsation of ±2.5 %
- b) Pulsation damper for a residual pulsation of ±0.5 %

Solution:

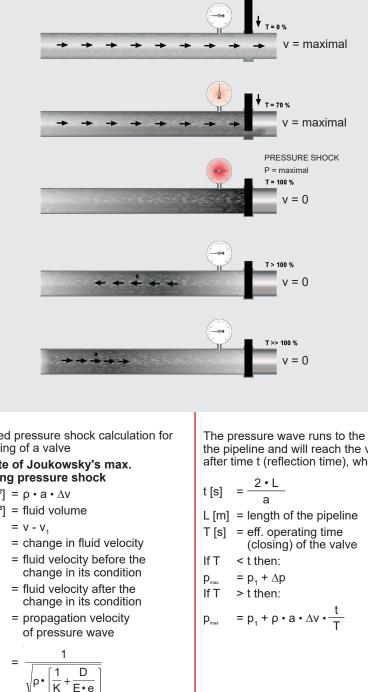

a) Determining the required suction flow stabiliser



$V_0 = 0.54 I$

Selected: SB16S-12 with 1 litre gas volume

b) Determining the required pulsation damper



V₀ = 3.2 I **Selected:** SB330P-4

3.2. SHOCK ABSORBER

Pressure shock produced when a valve is closed without a hydraulic accumulator

Determining the required damper size

The accumulator must absorb the kinetic energy of the fluid by converting it into potential energy within the pre-determined pressure range. The change of state of the gas is adiabatic in this case.

$$V_{0} = \frac{m \cdot \Delta v^{2} \cdot 0,4}{2 \cdot p_{1} \cdot \left[\left[\frac{p_{2}}{p_{1}}\right]^{1-\frac{1}{\kappa}} - 1\right] \cdot 10^{2}} \cdot \left[\frac{p_{1}}{p_{0}}\right]^{\frac{1}{\kappa}}$$

m [kg] = weight of the fluid
in the pipeline
v [m/s] = change in velocity of
the fluid
p_{1} (bar) = zero head of the pump
p_{2} [bar] = perm. operating pressure

p₀ [bar] = pre-charge pressure

A special calculation program for analysing the pressure curve is available for manifold sizing or sizing with regards to pump failure or start-up.

Simplified pressure shock calculation for the closing of a valve

Estimate of Joukowsky's max. occurring pressure shock

$\Delta p[N/m^2] = \rho \cdot a \cdot \Delta v$ $\rho [kg/m^3] = fluid volume$ Δv Δv v [m/s] v₁ [m/s] = fluid velocity after the a [m/s] a [m/s] **√**ρ• K⁺E•e K [N/m²] = compression modulus of the fluid $E[N/m^2] = elasticity modulus$ of the nineline

The pressure wave runs to the other end of the pipeline and will reach the valve again after time t (reflection time), whereby:

t [s]	$=\frac{2 \cdot L}{a}$
L [m]	= length of the pipeline
T [s]	= eff. operating time (closing) of the valve
If T	< t then:
\mathbf{p}_{max}	$= p_1 + \Delta p$
lf T	> t then:
	, t

3.2.1 Calculation example Rapid closing of a shut-off valve in a re-fuelling line.

Given parameters: Length of pipeline L: 2000 m Size of pipeline D: 250 mm Wall thickness of pipeline e: 6.3 mm Material of the pipeline: Steel Flow rate Q: 432 m³/h = 0.12 m³/s Density of medium p: 980 kg/m³ Zero feed height of pump p1: 6 bar Min. operating pressure p_{min}: 4 bar Eff. closing time of valve T: 1.5 s (approx. 20 % of total closing time) Operating temperature: 20 °C Compression modulus of fluid K: 1.62 × 10⁹ N/m² Elasticity modulus (steel) E: 2.04 × 10¹¹ N/m²

Required:

Size of the required shock absorber, when the max. pressure (p_2) must not exceed 10 bar.

Solution:

Determination of reflection time: 1 D 1 $\sqrt{\rho \cdot \left[\frac{1}{K} + \frac{D}{E \cdot e}\right]}$ a = $\sqrt{980 \cdot \left[\frac{1}{1.62 \cdot 10^9} + \frac{250}{2.04 \cdot 10^{11} \cdot 6.3}\right]}$ a = 1120 m/s $t = \frac{2 \cdot L}{a} = \frac{2 \cdot 2000}{1120} = 3.575 \text{ s}^{*}$ * since T < t the max. pressure shock occurs and the formula as shown in section 3.2. must be used. Q $=\frac{1}{A}$ v $=\frac{0.12}{0.25^2 \cdot \pi/4} = 2.45 \text{ m/s}$ ۷ = ρ • a • Δv $\Delta_{\rm n}$ $\Delta_{\rm p}$ = 980 • 1120 • (2.45-0) • 10⁻⁵ = 26.89 bar $p_{max} = p_1 + \Delta_p$ $p_{max} = 6 + 26.89 = 32.89$ bar Determining the required gas volume: $p_0 \leq 0.9 \cdot p_{min}$ $p_0 \le 0.9 \cdot 5 = 4.5 \text{ bar}$ $V_{0} = \frac{m \cdot v^{2} \cdot 0.4}{2 \cdot p_{1} \cdot \left[\left(\frac{p_{2}}{p_{1}}\right)^{1-\frac{1}{\kappa}} - 1\right] \cdot 10^{2}} \cdot \left[\frac{p_{1}}{p_{0}}\right]^{\frac{1}{\kappa}}$ with $m = V \cdot \rho = \frac{\pi}{4} \cdot D^2 \cdot L \cdot \rho$ $V_{0} = \frac{\frac{\pi}{4} \cdot 0.25^{2} \cdot 2000 \cdot 980 \cdot 2.45^{2} \cdot 0.4}{2 \cdot 7 \cdot \left[\left[\frac{11}{7}\right]^{1-\frac{1}{1.4}} - 1\right] \cdot 10^{2}} \cdot \left[\frac{7}{4.5}\right]^{\frac{1}{1.4}}$ $V_0 = 1641 I$ Selected: 4 shock absorbers SB35AH-450

86 HYDAC

4. SPECIFICATIONS

4.1. EXPLANATIONS, NOTES

4.1.1 Operating pressure

See table for relevant series (may differ from nominal pressure for foreign test certificates).

4.1.2 Permitted operating temperatures

-10 °C ... 80 °C

Standard design, others on request

4.1.3 **Nominal volume** See table for relevant series

4.1.4 Effective gas volume

See table for relevant series, based on nominal dimensions. This differs slightly from the nominal volume and must be used when calculating the effective fluid volume.

For diaphragm accumulators, the effective gas volume corresponds to the nominal volume.

4.1.5 Effective volume

Volume of fluid which is available between the operating pressures p_2 and p_1 .

4.1.7 Gas charging

Hydraulic accumulators must only be charged with nitrogen. Never use other gases. **Risk of explosion!**

In principle, only use nitrogen of at least Class 4.0 (filtration < 3 μ m). If other gases are to be used, please contact HYDAC for advice.

4.1.8 Limits for gas pre-charge pressure

Ratio of maximum operating pressure ${\rm p_2}$ to gas pre-charge pressure ${\rm p_0}.$

The specified values are maximum values and must not be considered as referring to a permanent load. The tolerable pressure ratio is influenced by the geometry, temperature, fluid and flow rate as well as any gas losses due to physical properties. See catalogue section:

- HYDAC Accumulator Technology No. 3.000
- Bladder accumulators Low pressure No. 3.202
- Bladder accumulators Standard design No. 3.201

4.1.9 Notice

All work on HYDAC hydraulic dampers must only be carried out by suitably trained staff.

Incorrect installation or handling can lead to serious accidents.

The operating instructions must be observed!

- Bladder accumulators No. 3.201.BA
- Diaphragm accumulators No. 3.100.BA
- Piston accumulators No. 3.301.BA

Further information such as accumulator sizing, safety information and extracts from the acceptance specifications can be found in the following catalogue section:

 HYDAC Accumulator Technology No. 3.000

Relevant PDF documents can be accessed at: www.hydac.com » Downloads » Documents » Accumulator Division

4.1.6 Working temperature and operating medium

The permitted working temperature of a hydraulic damper is dependent on the application limits of the metal materials and the separation element. Outside this temperature range, special materials must be used. The operating medium must also be taken into account.

The following table displays a selection of elastomer materials including max. temperature range and a rough overview of resistant and non-resistant fluids. Please contact us for help in selecting a suitable elastomer.

Materia	als	ge	5	Temperature range	Overview of the fluids ²⁾	
	Accumulator type			Resistant to	Not resistant to	
NBR	Acrylonitrile butadiene	2	SB, SBO	-15 °C + 80 °C	 Mineral oil (HL, HLP) Flame-retardant fluids from the 	 Aromatic hydrocarbons Chlorinated hydrocarbons
	rubber	5	SB, SBO	-50 °C + 50 °C	groups HFA, HFB, HFC Synthetic esters (HEES)	(HFD-S) • Amines and ketones
	9		SB, SBO	-30 °C + 80 °C	Water Sea water	 Hydraulic fluids from the group HFD-R Fuels
ECO	Ethylene oxide epichlorohydrin rubber Butyl rubber	3	SB SBO SB SBO	-30 °C +120 °C -40 °C +120 °C -50 °C +100 °C -50 °C +120 °C	 Mineral oil (HL, HLP) Flame-retardant fluids from the HFB group Synthetic esters (HEES) Water Sea water Hydraulic fluids from the group HFD-R Flame-retardant fluids from the group HFC 	 Aromatic hydrocarbons Chlorinated hydrocarbons (HFD-S) Amines and ketones Hydraulic fluids from the group HFD-R Flame-retardant fluids from the groups HFA and HFC Fuels Mineral oils and mineral greases Synthetic esters (HEES) Aliphatic, chlorinated and aromatic hydrocarbons
FKM	Fluorine rubber		SB, SBO	-10 °C +150 °C	 Water Mineral oil (HL, HLP) Hydraulic fluids from the group HFD Synthetic esters (HEES) Fuels Aromatic hydrocarbons Inorganic acids 	 Fuels Amines and ketones Ammonia Skydrol and HyJet IV Steam

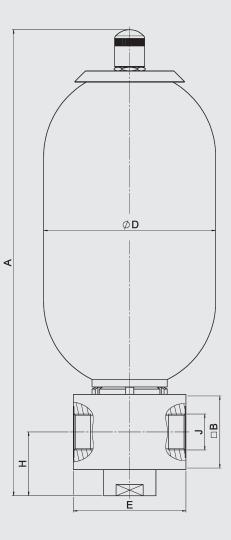
¹⁾ See section 4.2. Model code, material code, accumulator bladder/ diaphragm

²⁾ Others available on request

4.2. MODEL CODE

Pulsation damper, suction flow stabiliser, shock absorber Not all combinations are possible. Order example. For further information, please contact HYDAC.

	<u>SB3</u>	<u>30</u>	<u> </u>	<u>10</u>	Ą	<u>1</u> /	112	<u></u>	– <u>3:</u>	<u>30</u>	<u>AI</u>
Carico											
SB = with bladder											
SBO = with diaphragm											
Type code A = shock absorber											
AH = high flow shock absorber											
P = pulsation damper											
PH = high flow pulsation damper											
S = suction flow stabiliser											
Nominal volume [I]											
Fluid Port											
A = threaded connection											
E = threaded connection for weld type construction (diaphragm accumulators only)											
$F = flange^{1}$											
Type code											
1 = standard design (not for screw type diaphragm accumulators or shock absorbers)											
 2 = back-up version² 6 = standard design for screw type diaphragm accumulators 											
of type SBOPA6											
7 = M28x1.5 gas valve (only for SB16/35)											
Material code											
dependent on operating medium							+ ++				
standard design = 112 for mineral oils											
Fluid port											
1 = carbon steel							╵││				
2 = high tensile steel											
$3 = \text{stainless steel}^{3}$											
 4 = chemically nickel-plated (internal coating)²⁾ 6 = low temperature steel 											
7 = other materials											
Accumulator shell 0 = plastic (internal coating) ²⁾											
1 = carbon steel											
2 = chemically nickel-plated (internal coating) ²⁾											
4 = stainless steel $\frac{2}{3}$											
6 = low temperature steel 7 = other materials											
Accumulator bladder ⁴ / diaphragm 2 = NBR ⁵)											
3 = ECO											
4 = IIR											
$5 = \text{NBR}^{5}$											
6 = FKM 7 = other materials (e.g. PTFE, EPDM,)											
$9 = NBR^{5}$											
Certification code											
U = European Pressure Equipment Directive (PED)											
Permitted operating pressure [bar]											
Connection											
AI = ISO 228 (BSP), standard connection											


- DIN 13 to ISO 965/1 (metric) ¹⁾ BI =
- ANSI B1.1 (UNF thread, sealing to SAE standard) ¹⁾
 ANSI B1.20 (NPT thread) ¹⁾ CI DI
- SBO250P-0.075E1 and for SBO210P-0.16E1: AK = ISO 228 (BSP), standard connection

- Specify full details of version
 Not available for all versions
 Dependent on type and pressure rating
 When ordering a spare bladder, please state diameter of the smallest shell port
 Observe temperature ranges, see section 4.1.6

4.3. DIMENSIONS AND SPARE PARTS

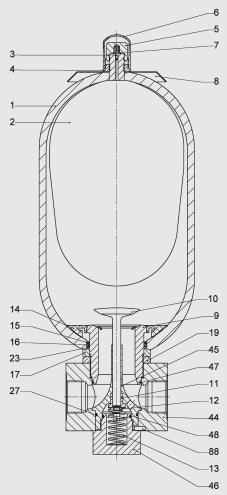
4.3.1 Pulsation damper bladder accumulator

SB330/550P(PH)-...

Dimensions SB

Carbon steel, NBR

Nominal volume	Series 3)	Max. operating pressure (PED)	Part no.	Eff. gas volume	A	□В	ØD	E	Н	J ¹⁾ Thread	Weight
[I]		[bar]		[1]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228	[kg]
1	SB330P	330	296114	1	365	80	118	120	57	C 1 1/A	11
I	SB550P	550	3435597 ³⁾		384	70	121	120	53	G I 1/4	13
2.5	SB330P	330	3078967	2.4	570	80	118		57		16
2.5	SB550P	550	3576155 ³⁾	2.5	589	70	121	120	53	G 1 1/4	20
4	SB330P	330	3121155	3.7	455	80	171]	57		18
4	SB330PH	330	-	3.7	491	100		150	85	G 1 1/2	26
5	SB550P	550	4313259 ³⁾	4.9	917	70	121	120	53	C 1 1/A	26
6	SB330P		3140558	5.7	559	80	171	120	57	G I 1/4	20
0	SB330PH	220	-	5.7	593	100			85	G 1 1/2	28
10	SB330P	330	3082257	9.3	620	100]	00	G 1 1/2	40
10	SB330PH		-	9.5	652	130x140]		100	Thread ISO 228 G 1 1/4 G 1 1/4 G 1 1/2 G 1 1/2 G 1 1/2	50
13	SB330P		2107871	12	712	100			85	C 1 1/2	48
20	SB330P	330	3084825	10.4	920	100	229	150	05	G T 1/2	70
20	SB330PH		-	18.4	952	130x140	229		100	SAE 2" - 6000 psi	80
24	SB330P		3152980	23.6	986	100]		85	C 1 1/2	82
20	SB330P	330	3121154	22.0	1445				60	G T 1/2	100
32	SB330PH]	-	33.9	1475	130x140]		100	SAE 2" - 6000 psi	110


¹⁾ Standard connection code = AI, others on request

²⁾ Special/welded version, on request

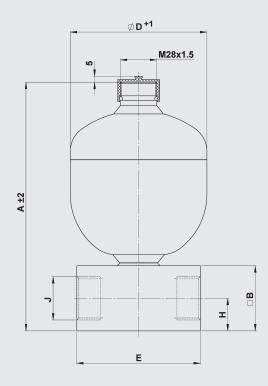
³⁾ Material code (MC) = 212, see model code, section 4.2.

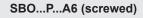
Spare parts

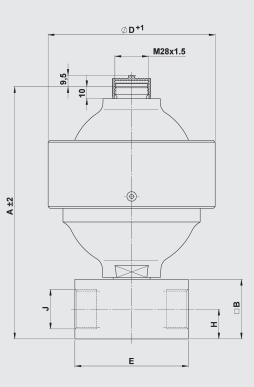
SB...P

Description	Item
Bladder assembly	
consisting of:	
Bladder	2
Gas valve insert*	3
Lock nut	4
Seal cap	2 3 4 5 6 7
Protective cap	6
O-ring	7
Seal kit	
consisting of:	
O-ring	7
Washer	15
O-ring	16
Support ring	23
O-ring	27
O-ring	47
O-ring	48

* Available separately Accumulator shell (item 1) and company label (item 8) not available as a spare part

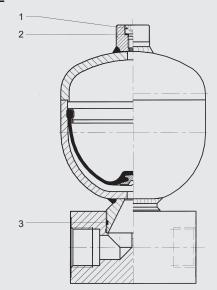

NBR, carbon steel Standard gas valve

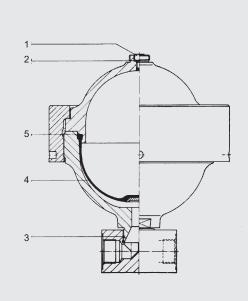

Description	Item
Connection assembly consisting of:	
Oil valve body	9
Valve plate	10
Damping bush	11
Lock nut	12
Valve spring	13
Anti-extrusion ring*	14
Washer	15
O-ring	16
Spacer	17
Groove nut	19
Support ring (only for 330 bar)	23
O-ring	27
Connector	44
Guide piece	45
Сар	46
O-ring	47
O-ring	48
Locking key	88


* Available separately

Volume	Bladder assembly	Seal kit				
[1]		SB330P/SB400P	SB550P			
1	237624					
2.5	236171					
4	236046	357055	2106402			
5	240917					
6	2112097					
10	236088					
13	376249					
20	236089	357058	357061			
24	376253					
32	235335					

SBO...P...E (welded)

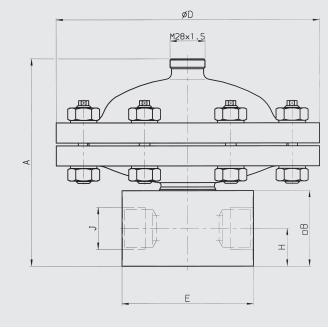

Dimensions SBO


Nominal volume	Series and connection type ¹⁾	Max. opera pressure (I		A	ΠB	ØD	E	Н	J thread	Weight
[I]		Carbon steel [bar]	Stainless steel [bar]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228	[kg]
0.075	SBO250PE1AK	250	-	131	-	64	Hex.	10	0.4/4	0.9
0.16	SBO210PE1AK		180	143	-	74	41	13	G 1/4	1
0.32	- SBO210PE1AI	210	160	175	- 50	93	- 80	25	0.1/0	2.6
0.5	- SBO210PE1AI		-	192	- 50	105	80	25	G 1/2	3
0.6	SBO330PE1AI	330	-	222		115				5.6
0.75	SBO210PE1AI	210	140	217		121				5.1
1	SBO200PE1AI	200	-	231		136				6
	SBO140PE1Al	140	-	244		145				6.2
1.4	SBO210PE1AI	210	-	250		150				7.7
	SBO250PE1Al	250	-	255	60	153	105	30	G 1	8.2
2	SBO100PE1AI	100	100	261		160		30 G 1		6.3
Z	SBO210PE1AI	210	-	267		167				8.9
3.5	SBO250PE1AI	250	-	377		170				13.5
٨	SBO50PE1AI		50	368		158			[mm] ISO 228 13 G 1/4 25 G 1/2	7.9
4	SBO250PE1Al]_	180	377		170				13.5
0.25	SBO500PA6AI	500	350	162	50	115 (125)	80	25	G 1/2	5.2 (6.3)
0.6	SBO450PA6AI	450	250	202		140 (142)	95	20		8.9 (9.1)
1.3	SBO400PA6AI	400	-	267		199				13.8
2	SBO250PA6AI	250	180	285	60	201	105	20	G 1	15.6
2.8	- SBO400PA6AI	400	-	308		252	105	30		24.6
4	3004008A0AI	400	-	325		287				36.6

¹⁾ Standard connection code = AK or AI, others on request
 () Brackets indicate different dimensions for stainless steel version

Spare parts

SBO...P...E


SBO...P...A6

Description	Item
Charging screw	1
Seal ring	2
Seal ring	3

Description	Item
Charging screw	1
Seal ring	2
Seal ring	3
Diaphragm	4
Support ring	5

4.3.3 Pulsation damper for aggressive media

SBO...P-...A6/347...(PTFE)

Pulsation damper in stainless steel with PTFE-coated diaphragm. Also available without connection block.

Permitted operating temperature: -15 $^\circ C$... +80 $^\circ C$

Permitted pressure ratio $p_2 : p_0 = 2 : 1$ Dimensions

Nominal	Max.	Part no.	A	□В	ØD	E	Н	J ¹⁾	Weight
volume	operating							Thread	
	pressure								
	(PED)								
[1]	[bar]		[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228	[kg]
0.2	40	4328332	140		210				11
0.2	250	4328333	197	60	230	105	30	G 1	27
0.5	40	3091224	165	00	210	105	30	GI	12
0.5	250	3091221	200]	230]			26

¹⁾ Standard connection code = AI, others on request

Spare parts SBO...P-...A6/347...(PTFE) 1 2 R. 4 3

Description	Item
Charging screw	1
Seal ring	2
Seal ring	3
Diaphragm	4

_

SBO...(P)-...A4/777... (PVDF/PTFE)

Figure 1

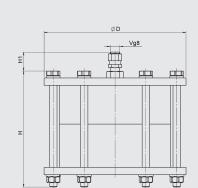
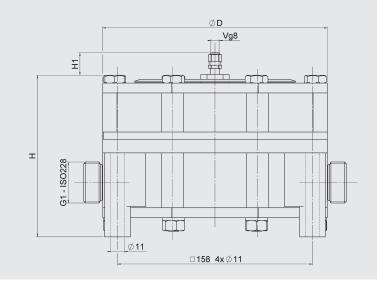
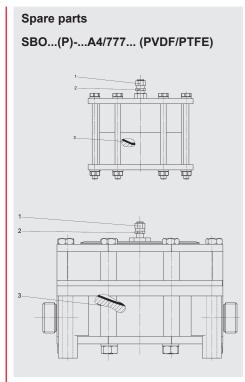
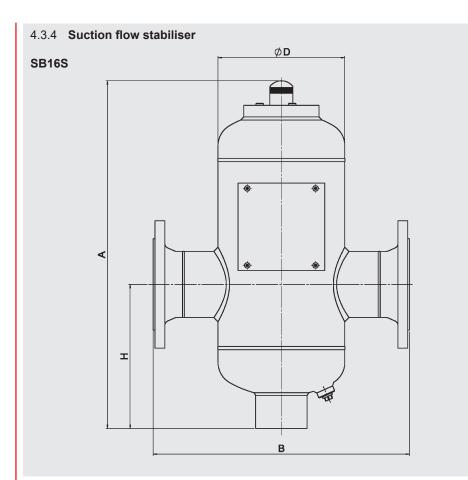



Figure 2



Pulsation damper in PVDF with PTFE-coated diaphragm. Permitted operating temperature: -10 °C ... +65 °C

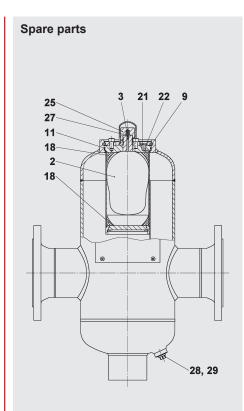
Permitted pressure ratio $p_2 : p_0 = 2 : 1$


Dimensions

Nominal volume	Max. operating pressure (PED)	Part no.	ØD	Н	H1	Weight	Figure
[I]	[bar]		[mm]	[mm]	[mm]	[kg]	
0.08	12	3655864	115	94	15	1.5	1
0.2	10	-		128	20	5.7	
	16	-	7	130	18	6.4	
	25	3357658	100	130	10	0.4	
	10	-	182	168	20	6	- 2
0.5	16	-		170		6.0	1
	25	3357657	7	170	19	6.8	

Item
1
2
3

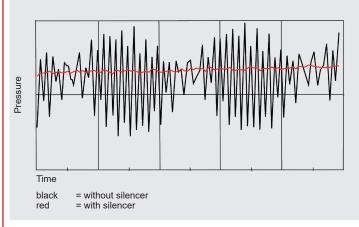
Relevant operating instructions are available on request.



Dimensions

SB16S Perm. ope	erating pres	sure 16 bai	r (PED)					
Nominal volume	Fluid volume	Eff. gas volume	A	В	ØD	Н	DN*	Weight
[1]	[I]	[1]	[mm]	[mm]	[mm]	[mm]		[kg]
12	12	1	580	425	219	220	65	40
25	25	2.5	1025	425	219	220	05	60
40	40	4	890	540	300	250	80	85
100	100	10	1150	650	406	350	100	140
400	400	35	2050	870	559	400	125	380

Further pressure ratings 25 bar, 40 bar; others on request. Other fluid volumes on request


* To EN1092-1/11 /B1/PN16

Description	Item
Accumulator bladder	2
Gas valve insert	3
Anti-extrusion ring	9
O-ring	11
Insertion ring, 2x	18
Locking screw	21
Seal ring	22
Seal cap	25
O-ring	27
Seal ring	28
Locking screw	29

5. SILENCER

5.1. APPLICATION Silencer for fluid noise damping Type SD...

5.1.1 General

All displacement pumps, such as axial and radial piston pumps, vane, gear or screw pumps produce volume and pressure fluctuations which are exhibited as vibrations and noises. Noises are not only generated and transmitted by the pump. They are also the result of mechanical vibrations and vibrations caused by the fluid pulsations, which are amplified when transmitted to larger surfaces. Insulation, the use of flexible hoses and silencer covers can only provide partial solutions to the problem as they do not prevent transmission to other areas.

5.1.2 Applications

Vehicles, machine tools, plastics machinery, aeroplanes, ships, hydraulic power stations and other systems with a large "surface" are all applications where the noise level can be reduced.

5.1.3 Mode of operation

The HYDAC fluid SILENCER is based on the principle of an expansion chamber with interference line.

By reflecting the oscillations within the silencer the majority of the oscillations are dampened across a wide frequency spectrum.

5.1.4 Design

The SILENCER consists of a housing, an internal tube and two pipe connections on opposite sides. It has no moving parts and no gas charge and is therefore absolutely maintenance free.

The SILENCER can be used for mineral oils, phosphate ester and water glycol. A stainless steel model is available for other fluids.

5.1.5 Installation

It is recommended that one connection side is joined via a flexible hose in order to reduce the transmission of mechanical vibrations. The damper can be installed in any position.

5.1.6 Permitted operating temperatures

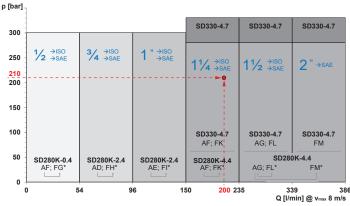
-20 °C ... +80 °C

5.1.7 Notice

All work on HYDAC silencers must only be carried out by suitably trained staff.

Incorrect installation or handling can lead to serious accidents. The operating instructions must be observed! No. 3.701.BA

Further information such as accumulator sizing, safety information and extracts from the acceptance specifications can be found in the following catalogue section:


- HYDAC Accumulator Technology
 - No. 3.000

Relevant PDF documents can be accessed at: www.hydac.com » Downloads » Documents » Accumulator Division

5.2. SIZING

Universal broadband silencer Series SD330, SD280K

With the aid of a few details (max. pressure and nominal flow), the appropriate silencer type for the particular application can easily be chosen by using the following pressure/flow rate matrix.

* SD280K model: ISO connection can be converted to an SAE flange connection (see section 5.4.2)

Example of the selection process:

Max. operating pressure p = 210 bar

Flow rate Q = 200 l/min

The following versions can be selected, depending on the connection system available:

- SD330-4.7...AF/AF
- SD330-4.7...FK/FK
- SD280K-4.4...AF/AF
- \rightarrow with SAE adapter (section 5.4.2), can be converted to FK/FK

Customer-specific versions

For special applications, the HYDAC SILENCER can be dimensioned to suit the application.

This can be done on the basis of a piston accumulator or a diaphragm accumulator.

The starting point for the selection table is to determine the level of transmission damping D from 20 dB upwards.

$$\mathsf{D} = 20 \cdot \log \frac{\Delta \mathsf{p}_{o}}{\Delta \mathsf{p}_{m}}$$

- Δp_{o} = amplitude of pressure fluctuations without silencer
- Δp_m = amplitude of pressure fluctuations with silencer

When selecting the damper the following has to be taken into account:

- 1) the size of the silencer body
- 2) the fundamental frequency f of the pump
 - f = i n / 60 in Hz
 - i = number of displacement elements
 - n = rotational speed in rpm

By calculating the fundamental frequency and using the system data (e.g. pipe length, ball valves, pressure, temperature, etc.) we can determine the correct size of silencer for you.

Use the specification sheet to provide the required data quickly and conveniently on a PC and send it to us. See www.hydac.com or catalogue section:

- HYDAC Accumulator Technology
 - No. 3.000

5.3. MODEL CODE

Not all combinations are possible.

Order example. For further information, please contact HYDAC.

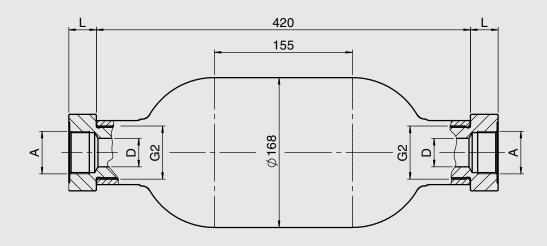
	<u>SD330</u> 4,7 / 412 U - 330 FK1/FK2
Series	
Type code*	
No details = forged housing	
K = piston accumulator base shell M = diaphragm accumulator base shell	
Nominal volume [I]	
Silencer type*	
0 = without pipe 4 = universal broadband silencer	
Housing material*	
1 = carbon steel 3 = stainless steel	
Sealing material 0 = no seal	
0 = no seal 2 = NBR (-20 °C +80 °C)	
Certification code*	
U = European Pressure Equipment Directive (PED)	
Permitted operating pressure [bar]	
Connections	
See section 5.4.	
e.g. FK1 – version 1 with SAE J 518 1 1/4 FK2 – version 2 with SAE J 518 1 1/4	

* Others on request

5.4. DIMENSIONS, STANDARD TYPES

The following connections are available as standard:

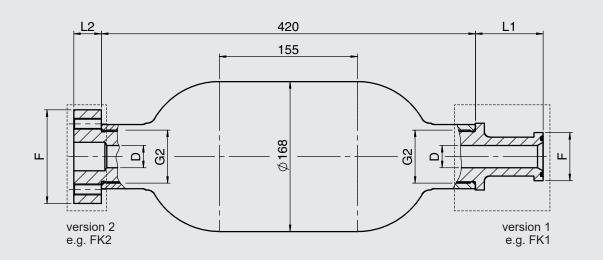
Series	ISO 22	· · · · · · · · · · · · · · · · · · ·							SAE J 518 compliant flange connection				
	G								SAE				
	3/8	1/2	3/4	1	1 1/4	1 1/2	1/2	3/4	1	1 1/4	1 1/2	2	
	AB	AC	AD	AE	AF	AG	FG	FH	FI	FK	FL	FM	
SD330					•	•				•	•	•	
SD280K*		•	•	•	•	•	•	•	•	•	•	•	


* Can be converted to an SAE flange connection, relevant information is highlighted in grey (see section 5.4.2)

With any connection type, care must be taken to ensure that the silencer has enough mechanical support.

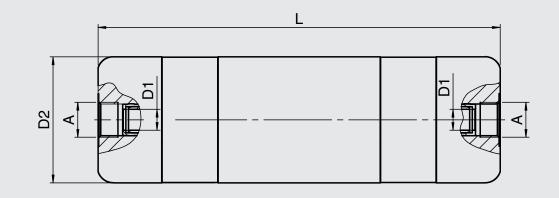
Mounting elements can be found in the following catalogue section:

• Mounting elements for hydraulic accumulators No. 3.502


ISO 228 compliant threaded connection A

Series	Vol. [I]	Perm. operating pressure [bar]	A ISO 228		L [mm]	D* [mm]	Weight [kg]	Part no.
80330	47	220	AF/AF	G 1 1/4	31	25	14.8	4390237
50330	SD330 4.7	330	AG/AG	G 1 1/2	31	32	15.8	4388045

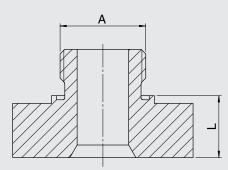
* Smallest internal diameter

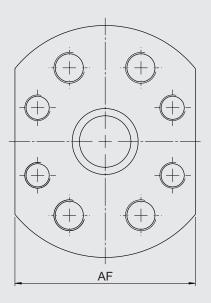

SAE J 518 compliant flange connection F

~
5
20/
2
~
2
N
er.

Series	Vol. [I]	Perm. operating pressure [bar]	F SAE J 518	F SAE J 518		L1 for FK1 [mm]	D* [mm]	Weight [kg]	Part no.
	4.7	330	FK2/FK2	SAE 1 1/4	31	-	25	16.9	4413180
			FK1/FK2	SAE 1 1/4	31	76	25	15.9	4402764
SD330			FL2/FL2	SAE 1 1/2	36	-	30	18.2	4390978
			FL1/FL2	SAE 1 1/2	36	76	30	16.8	4413183
			FM2/FM2	SAE 2	41	-	32	22	4413377
			FM1/FM2	SAE 2	41	93	32	19.2	4413381

* Smallest internal diameter




Series	Vol. [l]	Perm. operating pressure [bar]	A ISO 228		D2* [mm]	D2 [mm]	L [mm]	Weight [kg]	Part no.
SD280K	0.4	300	AC/AC	G 1/2	12	60	250	2.4	4402343
	2.4	300	AD/AD	G 3/4	16	120	383	14.5	4392308
			AE/AE	G 1	20				4392310
	4.4	280	AF/AF	G 1 1/4	25	150	445	26	4392311
			AG/AG	G 1 1/2	32				4392312

* Smallest internal diameter

SAE adapter for SD280K

There is an option to convert the ISO 228 threaded connection on the SD280K model to an SAE J 518 flange connection. This applies to **3000 PSI** as well as **6000 PSI**.

Series	Vol.	SD280K	Connection	SAE adapter						
	[1]	Part no.	recoding	Accumulator connection A ISO 228	Adapter connection SAE J 518	L [mm]	Weight [kg]	Part no.	AF	
SD280K	0.4	4402343	$AC \rightarrow FG$	G 1/2	SAE 1/2	18	0.3	4437591	55	
	2.4	4392308	$AD \rightarrow FH$	G 3/4	SAE 3/4	21	0.53	4416007	65	
	2.4	4392310	$AE \rightarrow FI$	G 1	SAE 1	24	0.85	4416008	70	
		4392311	$AF \rightarrow FK$	G 1 1/4	SAE 1 1/4	28	1.41	4416009	85	
	4.4	4200240	$AG \rightarrow FL$	G 1 1/2	SAE 1 1/2	28	1.86	4416010	100	
		4392312	$AG \rightarrow FM$	G 1 1/2	SAE 2	38	3.42	4416011	110	

5.5. SPARE PARTS AND ACCESSORIES

5.5.1 Spare parts

NBR, others on request

Designation	Part no.
Seal kit SD280K NBR	4416121

5.5.2 Mounting elements

The following table lists the recommended mounting clamps. The choice of clamp depends on the external diameter of the silencer (for more information on mounting elements see section 5.4.).

Designation	Part no.	Series					
		SD330	SD280K				
		4.7	0.4	2.4	4.4		
HyRac 167-175/178 H5 ST	445043	•					
HRGKSM 0 R 58-61/62 ST	3018442		•				
HRGKSM 1 R 119-127/124 ST	444505			•			
HRGKSM 1 R 146-154/151 ST	444321				•		

6. NOTE

The information in this brochure relates to the operating conditions and fields of application described. For applications and/or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: 0049 (0) 68 97 / 509 - 01 Fax: 0049 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-mail: speichertechnik@hydac.com